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Abstract: The introduction of the article gives a short historical overview of the modelling of
multi-body dynamics with unilateral contacts. The unilateral contacts formulation as intro-
duced by Pfeiffer and Glocker is adapted to discretely defined body shapes. By using two-step
collision detection, a fast and exact collision detection is achieved. The procedures are tested
on a numerical example of the woodpecker toy and the results are compared with those of
other authors who used a simpler mathematical model.
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1 INTRODUCTION

The mathematical formulation of multi-body
dynamics with unilateral contacts received much
interest in recent decades; however, it was only in
the last decade that the formulation has been
developed to the necessary mathematical and
physical consistency. Some of the first studies on
multi-body dynamics with a bilateral contact were
done by Vereshchagin [1], Armstrong and Green [2],
and Featherston [3] in the 1970s and 1980s. The first
studies of unilateral contacts as a linear comple-
mentarity problem (LCP) were published by Lötstedt
[4, 5]. Lötstedt was used as a basis by several
other researchers such as Murty [6], Baraff [7],
Panagiotopoulos [8], Moreau [9], and Mirtich and
Canny [10].

In recent years, the time-stepping methods have
developed particularly rapidly [11, 12]. These
methods operate in the impulse–velocity domain;
therefore, at impact there is no need to switch from
the force–acceleration domain to the impulse–
velocity domain, which allows longer time-steps
and avoids problems with the existence of a solution
at high friction. An important contribution to
the time-stepping methods was made by Monteiro-
Marques [13], who studied the convergence of the

solution and also by Stewart and Trinkle [14, 15],
Anitesca and Potra [16], and others.

Because the time-stepping methods lack precision,
we decided to use the formulation of Pfeiffer and
Glocker [17]; their work presents a mathematically
clear and physically consistent basis for plane contact
dynamics and is superior to the classical approach in
its uniform way of solving the stick–slip, detachment
and impact events. There is also no need to adopt a
number of generalized coordinates at any time. The
strength of the formulation is in its simplicity and
generality of use. Pfeiffer and Glocker introduced a
new friction decomposition that avoids singularities
in the presence of dependent coordinates and can
also handle over-constrained systems. They intro-
duced, for the first time, the impact law with friction
as an LCP.

The aim of this paper is to adapt the formulation
[18, 17] of multi-body plane dynamics with unilat-
eral contacts to discretely defined bodies with arbi-
trary body shapes. The procedures will be presented
using the example of the woodpecker toy, which has
already been extensively studied by other researchers.

The organization of the paper is as follows. In
section 2, the basics of multi-body dynamics with
unilateral contacts are presented. Section 3 discuses
the changes needed for discrete bodies simulations
and presents a fast but exact two-step collision
detection. In section 4, a numerical example with
the implementation of themathematical formulation
is discussed. Section 5 presents the conclusions.
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2 MULTI-BODY DYNAMICS WITH UNILATERAL
CONTACTS AS AN LCP

For the sake of completeness, this section gives
a brief review of the mathematical modelling of
multi-body dynamics with unilateral contacts as pre-
sented by Pfeiffer and Glocker [17, 18]. The methods
are presented for linear contacts (plain dynamics),
but with some modifications they can also be used
for plane contacts.

The equations of motion for a multi-body system
with f degrees of freedom (including bilateral con-
tacts) can be written as

M(q, t)€q� h(q, _q, t) ¼ 0 [ R f (1)

where M is the mass matrix, q is he vector of gener-
alized coordinates, and h is the vector of generalized
active forces. If there is a set of i [ IN contact forces
then the equations of motion will be

M€q� h ¼
X
i[IN

QC
i [ R f (2)

where QC
i are the generalized, non-conservative

active forces.
Note that the contact forces change the number of

degrees of freedom. In general, it is not known which
degrees of freedom disappear; this problem is usually
solved by looking at all the possible solutions and
finding the one that is physically consistent. If there
are nN possible contact points with a stick–slip
transition or detachment, then there are 3nN possible
solutions [17]. It is clear that the search for a phys-
ically consistent combination is time-consuming.
In addition, for numerical simulations, it is quite
unsuitable to change the number of the minimum
number of coordinates during each time-step.

As discussed subsequently, the LCP method solves
this problem in an elegant way, and the number of
generalized coordinates is constant at all times. The
number of generalized coordinates is always equal
to the number of degrees of freedom of the system
without unilateral contacts (2).

The real contact forces are linked with the general-
ized contact forces via the Jacobian matrix. In Fig. 1,
bodies are shown, the centres of gravity being
denoted by A and B. The normal contact force FA,N
at point CA on the body A as a generalized contact
force is

QC
A,N ¼

@IrCA

@q

� �T

FA,N ¼ JTCA
� InA � lN (3)

where JTCA
is the Jacobian matrix of IrCA

and when
including the normal force at point B, then QC

N

becomes

QC
N ¼ (JT

CAI
nA þ JTCB I

nB)lN ¼ vNlN (4)

wN includes the kinematical properties of the con-
tact, lN is the amplitude of the force, and I denotes
the inertial frame.

By using a similar notation for the tangential force
(index T), equation (2) is rewritten as

M €q� h�
X
i[IN

(wNlN þ wTlT)i ¼ 0 [ R f (5)

or by using matrix notation

WN ¼ {wNi}, WT ¼ {wTi}, i [ IN (6)

the equations of motion are

M €q� h� WNWTð Þ
lN

lT

� �
¼ 0 [ R f (7)

The contact situations are solved in two steps: in the
first, the non-smooth impact with friction is solved
and in the second, the stick–slip or detachment situ-
ation is solved. The impact is solved and in the
impulse-domain, whereas the stick–slip or detach-
ment is solved in the force-domain.

All the possible contact points IG are organized in
four sets during each time-step

IG ¼ {1, 2, . . . , nG}

IS ¼ {i [ IG; gN ¼ 0} nS elements

IN ¼ {i [ IS; _gN ¼ 0} nN elements

IH ¼ {i [ IN; _gT ¼ 0} nH elements (8)

The set IS contains all the closed contacts, the set IN
contains only the contacts with vanishing relative
normal velocities (stick–slip or detachment), and
the set IH contains the possibly sticking contacts.

Fig. 1 Contact forces
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The number of elements in the sets can change
during each time-step.

2.1 Stick–slip transition or detachment

First, the stick–slip transition or detachment pro-
blem is solved on an impact-free set IN. The
equations of motion (7) and the relative contact
accelerations €g are [17–19]

M €q� h� (WN þWG
��mGWH)

lN

lH

� �
¼ 0 [ R f (9)

€gN

€gH

� �
¼

WT
N

WT
H

 !
€qþ

�wN

�wH

� �
[ RnNþnH (10)

The index N denotes the normal direction and
the index H denotes the tangential direction of the
possibly sticking set IH. The new index G denotes
the sliding contacts (the tangential force is known)
of the set INnIH and the ��mG diagonal matrix of friction
coefficients.

Each closed contact i [ IN is characterized by a
vanishing contact distance gNi ¼ 0 and a normal
relative velocity _gNi ¼ 0. Because of the impene-
trability of the bodies gNi 5 0, a complementary
solution for each contact in the normal direction
can be found

€gNi
¼ 0 ^ lNi

5 0 contact is maintained (11)

€gNi
. 0 ^ lNi

¼ 0 detachment (12)

It is clear that the product of the contact force and
the relative acceleration is zero for all i [ IN

€gNi
lNi

¼ 0 (13)

Such a complementarity is sometimes also referred
to as the corner law [20] and is shown in Fig. 2. In
the following, we will also try to represent the idea
of the corner law in the tangential direction.
Figure 3(a) presents the Coulomb friction law.
Figure 3(b) shows the friction law decomposed into
two branches: one for positive sliding and another

for negative sliding. For each branch, a linear com-
plementarity is

€gTi
¼ 0 ^ lTi

þ m0i
lNi

5 0 remains sticking (14)

€gTi
. 0 ^ lTi

þ m0i
lNi

¼ 0 positive sliding (15)

and for all i [ IN

€gTi
(lTi

þ m0i
lNi

) ¼ 0 (16)

In a similar manner, an LCP for negative sliding is
built. In reality, we used a slightly different decompo-
sition for the tangential direction, as shown in Fig. 3.
The decomposition was presented by Pfeiffer and
Glocker [17] and avoids singularities in the case of
dependent constraints.

By extensive mathematical manipulation [17], the
normal and tangential directions are written together
in the form

y ¼ Axþ b (17)

y 5 0, x 5 0, yTx ¼ 0 (18)

Equations (17) and (18) represent an LCP where the
vectors {y, x} [ RnNþ4nH are not known, but they
comply with the complementary conditions (18),
where yTx ¼ 0 should be understood on the element
basis: yixi ¼ 0 for all i. Vector y includes the unknown
contact accelerations €g and vector x includes the
unknown contact forces l. A and b are the known
matrix and vector defined by the mass matrix, the
friction coefficients, and the contact shapes.

Fig. 3 Complementarity in the tangential direction

Fig. 2 Complementarity in the normal direction
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2.1.1 Linear complementarity problem

Equations (17) and (18) represent an LCP [21]. The
only known algorithms that guarantee to solve the
LCP are the enumerative methods [6]. As the enu-
merative methods take 2n possible different combi-
nations of xi yi (for a matrix A of dimension n), it is
clear that the enumerative methods are appropriate
for small values of n only.

A quicker way of solving the LCP is the complemen-
tarity pivot algorithm, presented by Cottle and
Dantzig [21], which is usually referred to as Lemke’s
algorithm. Lemke’s algorithm is based on the simplex
method and uses a basis vector with an artificial
variable z. The process can terminate into two ways:
through the iterative process, either z can be dropped
out of the basis vector (we found a solution) or z
cannot be dropped out. In the second case, the
solution might not exist or it cannot be found [22].
However, if the matrix A is positive-semidefinite,
the solution is guaranteed to converge [6]. Lemke’s
algorithm includes a matrix inversion during each
iteration step. Because only one column is changed
during each iteration step, a considerable reduction
in computation time can be gained by using the
Sherman–Morrison–Woodbury formula [22, 23].

2.2 Impact with friction

The stick–slip or detachment transition is solved in
the force–acceleration domain, whereas the impact
is solved in the impulse–velocity domain. Some
common assumptions for rigid-body impacts are
made. The duration of the impact is infinitely short,
the wave effects are not taken into account, during
the impact all positions and orientations, and
all the non-impulsive forces and torques remain
constant. The impact is divided into two phases:
the compression phase (time interval: tA– tC) and
the expansion phase (time interval: tC– tE). In this
work, Poisson’s impact law is used.

For impacts, the contacts of the set IS are taken
into account.

2.2.1 Compression phase

The index C is used for the compression phase. By
integrating the equation of motion (7) an impulse-
domain equation is built [17]

M(_qC � _qA)� (WNWT)
LNC

LTC

� �
¼ 0 [ R f (19)

The relative contact velocities are

_gNC
_gTC

� �
¼

WT
N

WT
T

� �
(_qC � _qA)þ

_gNA
_gTA

� �
[ R2nS (20)

LNC and LTC are the contact impulses during the
compression phase, and A and C represent the
beginning and the end of compression. Similarly, as
before, complementarity conditions in the normal
and tangential directions can be found (Fig. 4).

After decomposing the tangential direction and
after expansive mathematical manipulation, an LCP
of the form (17) can be stated. Vector y [ R5nS con-
tains the relative contact velocities at the end of the
compression and vector x [ R5nS the contact
impacts during compression.

2.2.2. Expansion phase

After solving the compression phase, we have to
solve the expansion phase (index E)

M(_qE � _qC)� WN WT

� � LNE

LTE

� �
¼ 0 [ R f (21)

_gNE

_gTE

� �
¼

WT
N

WT
T

 !
(_qE � _qC)þ

_gNC

_gTC

� �
[ R2nS (22)

The complementarity of the expansion phase is
shown in Fig. 5. The expansion impulse is pro-
portional to the compression impulse. However, if
numerous impacts can occur simultaneously then
an impulse at one contact point could result in pen-
etration at some other contact point. As shown in
Fig. 5, this is avoided by the complementarity in
the normal direction. If the expansion impulse is
larger than eNi

LNCi
to avoid penetration, then the

contact point cannot detach. Using such a notation,
the impact law might not be dissipative; however, as
shown in reference [17], this is not the case. The LCP
impact law of Pfeiffer and Glocker is one of the few
which also includes reversibility in the tangential
direction (super-elastic balls have this capability).
For this reversibility, a new parameter n, which

Fig. 4 Complementarity of compression in the normal

and tangential directions
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defines the impulseLTSi
, needs to be introduced [17].

As for compression, after extensive mathematical
manipulation an LCP of the form (17) can be
stated. Vector y [ R5nS contains the relative contact
velocities at the end of the expansion phase, whereas
the vector x [ R5nS contains the contact impacts of
the expansion.

3 INTRODUCTION TO DISCRETE BODIES

The multi-body dynamics as presented earlier is very
suitable for completely analytical solving: all one
needs to define is the mass matrixM, the generalized
forces h vector (7), the vector of generalized coordi-
nates q, and the matrices WN and WT for all the poss-
ible contact points i [ IG. The actual dimension of
WN and WT changes in accordance with the current
number of contacts.

The equations of motion for the contact-free case
are integrated (i.e. by Runge–Kutta method) until
there is at least one closed contact. If there are
impacts, then first the compression and expansion
phases need to be solved and afterwards the stick–
slip or detachment phase also need to be solved.
If there is no impact then only the stick–slip or
detachment has to be solved.

If the bodies of the system are defined as a discrete
polygon (Fig. 6) then the definition of the kinematical
parametersWN andWT of the possible contact points
needs to be redefined during each time-step.

3.1 Kinematical parameters of contact points

In this section, we show how to find the matrices WN

and WT for a contact point of two discretely defined
bodies. The points of the polygon are defined
counter-clockwise relative to the center of gravity.
The center of gravity of body A is denoted by A
(Figs 1 and 6).

The aim is to find a notation of the contact point of
body A by using the Jacobian matrix JCA

and a vector
with acceleration non-dependent values �jCA

I€rCA
¼ JCA

€qþ �jCA
(23)

The Jacobian of the contact point of body A is

JCA
¼

@I€rCA

@€q
[ R2,f (24)

where

I€rCA
¼ I€rA þ

d2

dt2
(AIA ArCA) (25)

AIA is a transformation matrix from the relative frame
A to the inertial frame I.

The Jacobian of the center of gravity for plane
motion is

JA ¼
@I€rA
@€q

[ R2,f (26)

If all the coordinates of I€rA are in the set of general-
ized coordinates, then the Jacobian is quite simple.
However, in general, this is not the case.

To define the Jacobian of I€rCA
, the rotation wA

around the center of gravity needs to be considered.
If the rotation wA is in the set of generalized coordi-
nates q then the Jacobian – because of rotation – is

JRA ¼

0 � � � 0 �yCA coswA 0 � � � 0
�xCA sinwA

0 � � � 0 þxCA coswA 0 � � � 0
�yCA sinwA

j � 1 j j þ 1

0
BBBB@

1
CCCCA

(27)

where j is the position of wA in the vector of general-
ized coordinates q and

ArCA ¼
xCA

yCA

� �
(28)

The Jacobian JCA
and the corresponding vector

�jCA
are

JCA
¼ JA þ JRA �jCA

¼ �jA þ �jRA (29)

Fig. 5 Complementarity of expansion in the normal

and tangential directions

Fig. 6 Discrete polygon
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If wA is absolute and also a generalized coordinate
then

�jRA ¼
(� x coswA þ y sinwA) _w2

A

�(y coswA þ x sinwA) _w2
A

� �
(30)

In a similar manner, we define the kinematics of the
contact point C of the body B (Fig. 1) and finally
come to the following vectors w and scalars �w

wN,A ¼ JTCA
� InA þ JTCB

� InB

wT,A ¼ JTCA
� ItA þ JTCB

� ItB (31)

�wN,A ¼ �j
T

CA
� InA þ �j

T

CB
� InB

�wT,A ¼ �j
T

CA
� ItA þ �j

T

CB
� ItB (32)

The scalars �wN and �wT were not mentioned before
and are needed when solving the contact problems
[17].

3.2 Collision detection

It would be very time-consuming to check each point
whether it is penetrating into another body. It is a
common practice, therefore, to build bounding
objects that are geometrically simple and can be
used for fast overlapping checks. Very often bound-
ing boxes (BB) and bounding spheres are used. As
this is quite an inaccurate method of collision detec-
tion, more advanced methods have been developed,
e.g. polygon bounding objects, BB tree hierarchies
and so on [24, 25].

The accuracy of bounding-objects methods
depends on the BB size, which for our application
is still not accurately enough. Because a fast and
exact collision detection is needed, a two-stage
method for collision detection is used. The first
step is collision detection on object-oriented BB
(OOBB) trees and the second step is exact collision
detection on the point-to-point level.

3.2.1 BB tree overlapping

Before the simulation starts for each body, an axis-
aligned (in the body coordinate system) BB tree

(AABB) is created. The main BB includes the whole
body; in the next level, two children BBs are created
(each containing half of the points of the parent). The
process of creating a child BB is repeated until there
exists a BB with more than the minimum number of
points (i.e. two or three) (Fig. 7).

When such an AABB is rotated we use it as an
OOBB. When a collision detection between two
bodies is made, the top BBs are checked first. If
overlapping exists, then the children are checked.
This overlapping check is repeated until there are
children BBs.

3.2.2 Exact collision detection

When two BBs without children overlap, then a
check for a possible exact point of penetration
needs to be done (Fig. 8). We have to check whether
body A is penetrating into body B and also vice versa.
If point C (body B) penetrates the border AB of the
penetrating body (body A) then the following tests
are positive (Fig. 9)

AB� AC 5 0 C is on the left of AB (33)

/BAC 4
wA

2
angle at A (34)

/ABC 4
wB

2
angle at B (35)

jhj , s maximum depth (36)

where

AB ¼ rB � rA, AC ¼ rC � rA (37)

The distance h is depicted in Fig. 9; s is a parameter
that needs to be set and should be several times
(10–100 times) greater than the maximum-allowed
penetration depth. After collision detection, a
parameter s is used to identify whether the time-
step is too large, i.e. if h is greater than the
maximum-allowed penetration depth, but a collision
is identified, then it is clear that the change of the
positions of the bodies is too large. If instead of s
the maximum penetration depth was to be used,
then in such a case mistakenly no collision would
be identified.

Fig. 7 Hierarchy of AABB tree: (a) first level, (b) second level, and (c) third level
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4 NUMERICAL EXAMPLES

The woodpecker toy is a good example of a system
with multiple impacts and stick–slip phenomena.
In this investigation, the woodpecker toy is studied
as a three-degrees-of-freedom (3-DOF) system and
also as a four-degrees-of-freedom (4-DOF) system.
The results are compared with the previous studies
of the woodpecker toy: Glocker [18] and Leine et al.
[19]. The 3-DOF model was experimentally verified
by Pfeiffer and [17].

A mechanical model of the woodpecker toy is
shown in Fig. 10.

1. Dynamics. mM ¼ 0.0003 kg, JM ¼ 5.0 � 1029 kg m2,
mS¼0.0045 kg, JS¼ 7.0� 1027 kg m2, g¼ 9.81 m s2,
and cw ¼ 0.0056 Nm/rad.

2. Geometry. r0 ¼ 0.0025 m, rM ¼ 0.0031 m, hM ¼

0.0058m, lM¼ 0.010m, lG¼ 0.015m, hS ¼ 0.020m,
lS ¼ 0.0201 m, and rS ¼ 0.002 m.

3. Contact. sleeve-pole: m ¼ 0.3, eN ¼ 0, eT ¼ 0, and
n ¼ 0, sleeve-woodpecker: m ¼ 0.3, eN ¼ 0.5,
eT ¼ 0, and n ¼ 0.

4.1 3-DOF model with small-angle
approximation

The set of generalized coordinates is

q ¼

yM
wM

wS

0
@

1
A (38)

The coordinate xM ¼ 0 is constant. The approxi-
mation of small angles is taken into account: sin
w � w, cos w � 1.

The mass matrix M and the force vector h are

M ¼

mM þ mS lM mS lG mS

lM mS JM þ l2M mS lGlM mS

lG mS lGlM mS JS þ l2G mS

0
B@

1
CA (39)

h ¼

�g(mS þ mM)

�glM mS þ cw wS � cw wM

�glG mS � cw wS þ cw wM

0
B@

1
CA (40)

The contact points and the appropriate kinematic
properties included in WN, WT, �wN, and �wT are
automatically generated during a collision from the
geometry of the bodies and their kinematics. How-
ever, in the 3-DOF model, the exact contact points
are known in advance, as are their kinematical
properties [17, 19].

The contact of the beak of the woodpecker with the
pole is characterized by

�wN,1 ¼

0
0

�hS

0
@

1
A �wT,1 ¼

1
lM

lG � lS

0
@

1
A (41)

Fig. 9 Penetrated body (shaded) and possibly

penetrating point C. Hatched region shows the

‘skin’ of the penetrated body

Fig. 8 Overlapping BBs without children

Fig. 10 Mechanical model (not to scale)
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In addition, the contacts of the lower edge and the
upper edge of the sleeve with the pole are character-
ized by

�wN,2 ¼

0

hM

0

0
B@

1
CA �wT,2 ¼

1

rM

0

0
B@

1
CA (42)

�wN,3 ¼

0

�hM

0

0
B@

1
CA �wT,3 ¼

1

rM

0

0
B@

1
CA (43)

The remaining vectors are �wN ¼ 0 and �wT ¼ 0. The
results are given in Fig. 11.

4.2 4-DOF model

The set of generalized coordinates is

q ¼

xM

yM
wM

wS

0
BB@

1
CCA (44)

The mass matrix M and the force vector h are

M¼

mS þmM 0 �lMms sinwM

mS þmM lMmS coswM � � �

JM þ l2MmS(coswM)
2

þl2MmS( sinwM)
2

symmetric

0
BBBBBB@

�lGmS sinwS

lGmS coswS

lGlM mS coswS coswM þ lG lM mS sinwS sinwM

JS þ l2GmS(coswS)
2 þ l2GmS( sinwS)

2

1
CCCA 45)

h¼

mS(lG _w2
S coswS þ lM _w2

M)coswM

�g(mS þmM)þ lG mS _w2
S sinwS þ lM mS _wM sinwM

cw wS � cw wM þ lM mS(� g coswM

þlG _w2
S sin (wS �wM))

�cw wS þ cw wM � lG mS _w
2
M(g coswS

þlM sin (wS �wM))

0
BBBBBBBB@

1
CCCCCCCCA

(46)

Fig. 11 Results of the 3-DOF model. Left: in time domain, right: phase-space portraits
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In this case, the actual contact point of the beak
and the pole is not known and the kinematical
properties of the contact points WN, WT, �wN, and �wT

are non-lineraly dependent on generalized coordi-
nates and need to be recalculated during each step
according to equations (31) and (32). The results
are given in Fig. 12.

4.3 Comparison and verification of the 3- and
4-DOF models

In Table 1, the more important events of the 3- and
4-DOF models are described. Whereas previous
work on the woodpecker toy was based on a 3-DOF
mechanical model with a small-angle approximation

Fig. 12 Results of 4-DOF model. Left: in time domain, right: phase-space portraits
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[17–19], this study presents the mechanical
model with 4-DOF and without the small-angle
approximation.

By comparing the 3-DOF model presented in this
investigation with the study of Leine et al. [19], we
see that the results are in close accordance. The
period of the solution is T � 0.15 s, the vertical
displacement is DyM � 23 mm, and the phase-space
portraits are practically the same.

However, the influence on the dynamics of the
wooden toy of the additional degree of freedom xM
and the non-linear mass matrix M and the non-
linear vector h showed up as quite important. The
biggest difference between the 3- and 4-DOF
models can be seen in the vertical displacement of
the sleeve, which is much smaller in the case of the
4-DOF model: DyM ¼ 12 mm (Fig. 13). Consequen-
tially, the period decreased to T � 0:14 s. The
phase-space portraits of the coordinates wM, wS are,
however, qualitatively comparable.

Glocker [18] experimentally measured the
vertical displacement of the woodpecker to be
DyM � 5.3 mm. As the 3- and 4-DOF models differ

mainly in the vertical displacement and as the
4-DOF is closer to the experimental displacement,
we can assume that the details added to the 4-DOF
model help to build an adequate dynamical model.

5 CONCLUSIONS

This article presents the use of the Pfeiffer–Glocker
[17] formulation of multi-body dynamics with
unilateral contacts on discretely defined bodies.
The mathematical notation of stick–slip or detach-
ment including impacts with friction and the reversi-
bility in the tangential direction was adopted to

Table 1 Comparison of key events for the 3- and 4-DOF models

3-DOF model 4-DOF model

No. Description t (ms) No. Description t (ms)

1 Impact of sleeve then slipping of sleeve 0.0 1 Impact of sleeve (LR) 0.0
2 Impact of sleeve (UL), detachment of sleeve (LR) 14.2
3 Impact of sleeve (LR) 22.8

2 Slip-stick transition of sleeve 51.4 4 Slip-stick transition of sleeve 47.4

3 Stick-slip transition of sleeve 90.6 5 Stick-slip transition of sleeve 91.2

4 Detachment of sleeve 96.2 6 Detachment of sleeve (LR and UL) 95.4

5 Impact then slipping of sleeve 106.4 7 Impact (LL) then slipping of sleeve 105.4

6 Impact (woodpecker beak) 110.0 8 Impact (woodpecker beak) 111.2
7 Impact of sleeve 110.8 9 Detachment of sleeve (LR and UL) 123.2
8 Detachment of sleeve 114.0 10 Impact of sleeve (UR) then detachment 134.8

1 Impact of sleeve then slipping of sleeve 149.4 1 Impact of sleeve (LR) 138.8

L, lower; U, upper; R, right; and L, left.

Fig. 14 Electric-brush dynamics: sliding, sticking, and

impacting against rough commutator-surface

and brush-guidance

Fig. 13 Relative displacement in the vertical direction

of the 3- and 4-DOF model
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discretely defined bodies. In discrete bodies, the
number of possible contact points cannot be fore-
seen, and therefore it is necessary that the contact-
points sets and the necessary contact kinematics
are created during runtime.

The Pfeiffer–Glocker formulation proved to be
useful in several applications on gear rattling, turbine
blade dampers, friction clutch vibrations, drilling
machine, and soon [17]. This formulation can now
be expanded towards rigid bodies with body-shapes
which cannot be determined by simple mathemat-
ical functions, i.e. electric-brush dynamics with
rough contact surfaces see (Fig. 14).

The exact collision detection of discrete bodies is a
bottleneck in numerical simulations. The presented
two-step collision detection combines the speed of
BB trees and the precision of vector analysis.

To show the benefits of the presented procedures,
a numerical example of the woodpecker toy with
geometrical non-linearities and concurrent stick–
slip and impact events is compared with previous
studies. It revealed that the additional degree of free-
dom and non-linearities introduced by the 4-DOF
model produce qualitatively and partly quantitat-
ively comparable results with the 3-DOF model.

However, the vertical displacement of the wood-
pecker differs from previous models for �50 per
cent. The reason for the difference in the vertical dis-
placement is the additional horizontal degree of free-
dom introduced by the 4-DOFmodel, which changes
themechanism of the jamming of the sleeve. The pre-
sented 4-DOF model is assumed to be more realistic.
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APPENDIX

Notation

A known matrix in LCP
AIA transformation matrix from the relative

frame A to the inertial frame I
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b known vector in LCP
f degrees of freedom
FA,N vector of normal contact force at point CA

on the body A
FA,T vector of tangential contact force at point

CA on the body A
gN vector of relative contact coordinates in

normal direction
gT vector of relative contact coordinates in

tangential direction
h vector of generalized active forces
jA vector of acceleration parameters of the

centre of gravity of A which do not depend
on the generalized accelerations

JA Jacobian matrix because of translation of
centre of gravity

JTCA
the Jacobian matrix of IrCA

JTCB
the Jacobian matrix of IrCB

JRA Jacobian matrix because of rotation of
centre of gravity

M mass matrix

InA normal vector at contact point
q vector of generalized coordinates
Qi

C vector of generalized, non-conservative
active forces

IrCA
vector to point CA on the body A

tA start time of compression phase

ItA tangent vector at contact point
tC end time of compression phase and start

time of expansion phase
tE end time of expansion phase

WN matrix of kinematical properties in normal
direction of a set of contact points

WT matrix of kinematical properties in
tangential direction of a set of contact
points

wN vector of kinematical properties in normal
direction of a contact point

wT vector of kinematical properties in
tangential direction of a contact point

x unknown vector in LCP
y unknown vector in LCP

wA rotational degree of freedom
for body A

lN amplitude of contact force in normal
direction

lT amplitude of contact force in tangential
direction

lN vector of amplitudes of contact forces in
normal direction

lT vector of amplitudes of contact forces in
tangential direction

LNC vector of contact impulses (normal) in
compression phase

LTC vector of contact impulses (tangential) in
compression phase

LNE vector of contact impulses (normal) in
expansion phase

LTE vector of contact impulses (tangential) in
expansion phase

��m diagonal matrix of friction coefficients
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